Metamath Proof Explorer


Theorem djuenun

Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 19-Aug-2023)

Ref Expression
Assertion djuenun A B C D B D = A ⊔︀ C B D

Proof

Step Hyp Ref Expression
1 djuen A B C D A ⊔︀ C B ⊔︀ D
2 1 3adant3 A B C D B D = A ⊔︀ C B ⊔︀ D
3 relen Rel
4 3 brrelex2i A B B V
5 3 brrelex2i C D D V
6 id B D = B D =
7 endjudisj B V D V B D = B ⊔︀ D B D
8 4 5 6 7 syl3an A B C D B D = B ⊔︀ D B D
9 entr A ⊔︀ C B ⊔︀ D B ⊔︀ D B D A ⊔︀ C B D
10 2 8 9 syl2anc A B C D B D = A ⊔︀ C B D