Metamath Proof Explorer


Theorem djuex

Description: The disjoint union of sets is a set. For a shorter proof using djuss see djuexALT . (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion djuex A V B W A ⊔︀ B V

Proof

Step Hyp Ref Expression
1 df-dju A ⊔︀ B = × A 1 𝑜 × B
2 snex V
3 2 a1i B W V
4 xpexg V A V × A V
5 3 4 sylan B W A V × A V
6 5 ancoms A V B W × A V
7 snex 1 𝑜 V
8 7 a1i A V 1 𝑜 V
9 xpexg 1 𝑜 V B W 1 𝑜 × B V
10 8 9 sylan A V B W 1 𝑜 × B V
11 unexg × A V 1 𝑜 × B V × A 1 𝑜 × B V
12 6 10 11 syl2anc A V B W × A 1 𝑜 × B V
13 1 12 eqeltrid A V B W A ⊔︀ B V