Description: The disjoint union of sets is a set. For a shorter proof using djuss see djuexALT . (Contributed by AV, 28-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | djuex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju | |
|
2 | snex | |
|
3 | 2 | a1i | |
4 | xpexg | |
|
5 | 3 4 | sylan | |
6 | 5 | ancoms | |
7 | snex | |
|
8 | 7 | a1i | |
9 | xpexg | |
|
10 | 8 9 | sylan | |
11 | unexg | |
|
12 | 6 10 11 | syl2anc | |
13 | 1 12 | eqeltrid | |