Metamath Proof Explorer


Theorem djuexb

Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023)

Ref Expression
Assertion djuexb A V B V A ⊔︀ B V

Proof

Step Hyp Ref Expression
1 djuex A V B V A ⊔︀ B V
2 df-dju A ⊔︀ B = × A 1 𝑜 × B
3 2 eleq1i A ⊔︀ B V × A 1 𝑜 × B V
4 unexb × A V 1 𝑜 × B V × A 1 𝑜 × B V
5 3 4 bitr4i A ⊔︀ B V × A V 1 𝑜 × B V
6 0nep0
7 6 necomi
8 rnexg × A V ran × A V
9 rnxp ran × A = A
10 9 eleq1d ran × A V A V
11 8 10 syl5ib × A V A V
12 7 11 ax-mp × A V A V
13 1oex 1 𝑜 V
14 13 snnz 1 𝑜
15 rnexg 1 𝑜 × B V ran 1 𝑜 × B V
16 rnxp 1 𝑜 ran 1 𝑜 × B = B
17 16 eleq1d 1 𝑜 ran 1 𝑜 × B V B V
18 15 17 syl5ib 1 𝑜 1 𝑜 × B V B V
19 14 18 ax-mp 1 𝑜 × B V B V
20 12 19 anim12i × A V 1 𝑜 × B V A V B V
21 5 20 sylbi A ⊔︀ B V A V B V
22 1 21 impbii A V B V A ⊔︀ B V