Metamath Proof Explorer


Theorem djufi

Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004)

Ref Expression
Assertion djufi A ω B ω A ⊔︀ B ω

Proof

Step Hyp Ref Expression
1 df-dju A ⊔︀ B = × A 1 𝑜 × B
2 0elon On
3 relsdom Rel
4 3 brrelex1i A ω A V
5 xpsnen2g On A V × A A
6 2 4 5 sylancr A ω × A A
7 sdomen1 × A A × A ω A ω
8 6 7 syl A ω × A ω A ω
9 8 ibir A ω × A ω
10 1on 1 𝑜 On
11 3 brrelex1i B ω B V
12 xpsnen2g 1 𝑜 On B V 1 𝑜 × B B
13 10 11 12 sylancr B ω 1 𝑜 × B B
14 sdomen1 1 𝑜 × B B 1 𝑜 × B ω B ω
15 13 14 syl B ω 1 𝑜 × B ω B ω
16 15 ibir B ω 1 𝑜 × B ω
17 unfi2 × A ω 1 𝑜 × B ω × A 1 𝑜 × B ω
18 9 16 17 syl2an A ω B ω × A 1 𝑜 × B ω
19 1 18 eqbrtrid A ω B ω A ⊔︀ B ω