Metamath Proof Explorer


Theorem djuin

Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022)

Ref Expression
Assertion djuin inl A inr B =

Proof

Step Hyp Ref Expression
1 incom inr B inl A = inl A inr B
2 imassrn inr B ran inr
3 djurf1o inr : V 1-1 onto 1 𝑜 × V
4 f1of inr : V 1-1 onto 1 𝑜 × V inr : V 1 𝑜 × V
5 frn inr : V 1 𝑜 × V ran inr 1 𝑜 × V
6 3 4 5 mp2b ran inr 1 𝑜 × V
7 2 6 sstri inr B 1 𝑜 × V
8 incom inl A 1 𝑜 × V = 1 𝑜 × V inl A
9 imassrn inl A ran inl
10 djulf1o inl : V 1-1 onto × V
11 f1of inl : V 1-1 onto × V inl : V × V
12 frn inl : V × V ran inl × V
13 10 11 12 mp2b ran inl × V
14 9 13 sstri inl A × V
15 1n0 1 𝑜
16 15 necomi 1 𝑜
17 disjsn2 1 𝑜 1 𝑜 =
18 xpdisj1 1 𝑜 = × V 1 𝑜 × V =
19 16 17 18 mp2b × V 1 𝑜 × V =
20 ssdisj inl A × V × V 1 𝑜 × V = inl A 1 𝑜 × V =
21 14 19 20 mp2an inl A 1 𝑜 × V =
22 8 21 eqtr3i 1 𝑜 × V inl A =
23 ssdisj inr B 1 𝑜 × V 1 𝑜 × V inl A = inr B inl A =
24 7 22 23 mp2an inr B inl A =
25 1 24 eqtr3i inl A inr B =