Metamath Proof Explorer


Theorem djulcl

Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)

Ref Expression
Assertion djulcl C A inl C A ⊔︀ B

Proof

Step Hyp Ref Expression
1 df-inl inl = x V x
2 opeq2 x = C x = C
3 elex C A C V
4 0ex V
5 4 snid
6 opelxpi C A C × A
7 5 6 mpan C A C × A
8 1 2 3 7 fvmptd3 C A inl C = C
9 elun1 C × A C × A 1 𝑜 × B
10 7 9 syl C A C × A 1 𝑜 × B
11 df-dju A ⊔︀ B = × A 1 𝑜 × B
12 10 11 eleqtrrdi C A C A ⊔︀ B
13 8 12 eqeltrd C A inl C A ⊔︀ B