Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Disjoint union
djulcl
Next ⟩
djurcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
djulcl
Description:
Left closure of disjoint union.
(Contributed by
Jim Kingdon
, 21-Jun-2022)
Ref
Expression
Assertion
djulcl
⊢
C
∈
A
→
inl
⁡
C
∈
A
⊔︀
B
Proof
Step
Hyp
Ref
Expression
1
df-inl
⊢
inl
=
x
∈
V
⟼
∅
x
2
opeq2
⊢
x
=
C
→
∅
x
=
∅
C
3
elex
⊢
C
∈
A
→
C
∈
V
4
0ex
⊢
∅
∈
V
5
4
snid
⊢
∅
∈
∅
6
opelxpi
⊢
∅
∈
∅
∧
C
∈
A
→
∅
C
∈
∅
×
A
7
5
6
mpan
⊢
C
∈
A
→
∅
C
∈
∅
×
A
8
1
2
3
7
fvmptd3
⊢
C
∈
A
→
inl
⁡
C
=
∅
C
9
elun1
⊢
∅
C
∈
∅
×
A
→
∅
C
∈
∅
×
A
∪
1
𝑜
×
B
10
7
9
syl
⊢
C
∈
A
→
∅
C
∈
∅
×
A
∪
1
𝑜
×
B
11
df-dju
⊢
A
⊔︀
B
=
∅
×
A
∪
1
𝑜
×
B
12
10
11
eleqtrrdi
⊢
C
∈
A
→
∅
C
∈
A
⊔︀
B
13
8
12
eqeltrd
⊢
C
∈
A
→
inl
⁡
C
∈
A
⊔︀
B