Metamath Proof Explorer


Theorem djulepw

Description: If A is idempotent under cardinal sum and B is dominated by the power set of A , then so is the cardinal sum of A and B . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion djulepw A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A

Proof

Step Hyp Ref Expression
1 djueq1 A = A ⊔︀ B = ⊔︀ B
2 1 breq1d A = A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 A
3 relen Rel
4 3 brrelex2i A ⊔︀ A A A V
5 4 adantr A ⊔︀ A A B 𝒫 A A V
6 canth2g A V A 𝒫 A
7 sdomdom A 𝒫 A A 𝒫 A
8 5 6 7 3syl A ⊔︀ A A B 𝒫 A A 𝒫 A
9 simpr A ⊔︀ A A B 𝒫 A B 𝒫 A
10 reldom Rel
11 10 brrelex1i B 𝒫 A B V
12 djudom1 A 𝒫 A B V A ⊔︀ B 𝒫 A ⊔︀ B
13 11 12 sylan2 A 𝒫 A B 𝒫 A A ⊔︀ B 𝒫 A ⊔︀ B
14 simpr A 𝒫 A B 𝒫 A B 𝒫 A
15 10 brrelex2i B 𝒫 A 𝒫 A V
16 djudom2 B 𝒫 A 𝒫 A V 𝒫 A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A
17 14 15 16 syl2anc2 A 𝒫 A B 𝒫 A 𝒫 A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A
18 domtr A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A
19 13 17 18 syl2anc A 𝒫 A B 𝒫 A A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A
20 8 9 19 syl2anc A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A
21 pwdju1 A V 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜
22 5 21 syl A ⊔︀ A A B 𝒫 A 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜
23 domentr A ⊔︀ B 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜 A ⊔︀ B 𝒫 A ⊔︀ 1 𝑜
24 20 22 23 syl2anc A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A ⊔︀ 1 𝑜
25 24 adantr A ⊔︀ A A B 𝒫 A A A ⊔︀ B 𝒫 A ⊔︀ 1 𝑜
26 0sdomg A V A A
27 5 26 syl A ⊔︀ A A B 𝒫 A A A
28 27 biimpar A ⊔︀ A A B 𝒫 A A A
29 0sdom1dom A 1 𝑜 A
30 28 29 sylib A ⊔︀ A A B 𝒫 A A 1 𝑜 A
31 5 adantr A ⊔︀ A A B 𝒫 A A A V
32 djudom2 1 𝑜 A A V A ⊔︀ 1 𝑜 A ⊔︀ A
33 30 31 32 syl2anc A ⊔︀ A A B 𝒫 A A A ⊔︀ 1 𝑜 A ⊔︀ A
34 simpll A ⊔︀ A A B 𝒫 A A A ⊔︀ A A
35 domentr A ⊔︀ 1 𝑜 A ⊔︀ A A ⊔︀ A A A ⊔︀ 1 𝑜 A
36 33 34 35 syl2anc A ⊔︀ A A B 𝒫 A A A ⊔︀ 1 𝑜 A
37 pwdom A ⊔︀ 1 𝑜 A 𝒫 A ⊔︀ 1 𝑜 𝒫 A
38 36 37 syl A ⊔︀ A A B 𝒫 A A 𝒫 A ⊔︀ 1 𝑜 𝒫 A
39 domtr A ⊔︀ B 𝒫 A ⊔︀ 1 𝑜 𝒫 A ⊔︀ 1 𝑜 𝒫 A A ⊔︀ B 𝒫 A
40 25 38 39 syl2anc A ⊔︀ A A B 𝒫 A A A ⊔︀ B 𝒫 A
41 0ex V
42 11 adantl A ⊔︀ A A B 𝒫 A B V
43 djucomen V B V ⊔︀ B B ⊔︀
44 41 42 43 sylancr A ⊔︀ A A B 𝒫 A ⊔︀ B B ⊔︀
45 dju0en B V B ⊔︀ B
46 domen1 B ⊔︀ B B ⊔︀ 𝒫 A B 𝒫 A
47 42 45 46 3syl A ⊔︀ A A B 𝒫 A B ⊔︀ 𝒫 A B 𝒫 A
48 9 47 mpbird A ⊔︀ A A B 𝒫 A B ⊔︀ 𝒫 A
49 endomtr ⊔︀ B B ⊔︀ B ⊔︀ 𝒫 A ⊔︀ B 𝒫 A
50 44 48 49 syl2anc A ⊔︀ A A B 𝒫 A ⊔︀ B 𝒫 A
51 2 40 50 pm2.61ne A ⊔︀ A A B 𝒫 A A ⊔︀ B 𝒫 A