Metamath Proof Explorer


Theorem djulf1o

Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)

Ref Expression
Assertion djulf1o inl : V 1-1 onto × V

Proof

Step Hyp Ref Expression
1 df-inl inl = x V x
2 0ex V
3 2 snid
4 opelxpi x V x × V
5 3 4 mpan x V x × V
6 5 adantl x V x × V
7 fvexd y × V 2 nd y V
8 1st2nd2 y × V y = 1 st y 2 nd y
9 xp1st y × V 1 st y
10 elsni 1 st y 1 st y =
11 9 10 syl y × V 1 st y =
12 11 opeq1d y × V 1 st y 2 nd y = 2 nd y
13 8 12 eqtrd y × V y = 2 nd y
14 13 eqeq2d y × V x = y x = 2 nd y
15 eqcom x = y y = x
16 eqid =
17 vex x V
18 2 17 opth x = 2 nd y = x = 2 nd y
19 16 18 mpbiran x = 2 nd y x = 2 nd y
20 14 15 19 3bitr3g y × V y = x x = 2 nd y
21 20 bicomd y × V x = 2 nd y y = x
22 21 ad2antll x V y × V x = 2 nd y y = x
23 1 6 7 22 f1o2d inl : V 1-1 onto × V
24 23 mptru inl : V 1-1 onto × V