Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Disjoint union
djurcl
Next ⟩
djulf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
djurcl
Description:
Right closure of disjoint union.
(Contributed by
Jim Kingdon
, 21-Jun-2022)
Ref
Expression
Assertion
djurcl
⊢
C
∈
B
→
inr
⁡
C
∈
A
⊔︀
B
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
C
∈
B
→
C
∈
V
2
1oex
⊢
1
𝑜
∈
V
3
2
snid
⊢
1
𝑜
∈
1
𝑜
4
opelxpi
⊢
1
𝑜
∈
1
𝑜
∧
C
∈
B
→
1
𝑜
C
∈
1
𝑜
×
B
5
3
4
mpan
⊢
C
∈
B
→
1
𝑜
C
∈
1
𝑜
×
B
6
opeq2
⊢
x
=
C
→
1
𝑜
x
=
1
𝑜
C
7
df-inr
⊢
inr
=
x
∈
V
⟼
1
𝑜
x
8
6
7
fvmptg
⊢
C
∈
V
∧
1
𝑜
C
∈
1
𝑜
×
B
→
inr
⁡
C
=
1
𝑜
C
9
1
5
8
syl2anc
⊢
C
∈
B
→
inr
⁡
C
=
1
𝑜
C
10
elun2
⊢
1
𝑜
C
∈
1
𝑜
×
B
→
1
𝑜
C
∈
∅
×
A
∪
1
𝑜
×
B
11
5
10
syl
⊢
C
∈
B
→
1
𝑜
C
∈
∅
×
A
∪
1
𝑜
×
B
12
df-dju
⊢
A
⊔︀
B
=
∅
×
A
∪
1
𝑜
×
B
13
11
12
eleqtrrdi
⊢
C
∈
B
→
1
𝑜
C
∈
A
⊔︀
B
14
9
13
eqeltrd
⊢
C
∈
B
→
inr
⁡
C
∈
A
⊔︀
B