Metamath Proof Explorer


Theorem djurcl

Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)

Ref Expression
Assertion djurcl C B inr C A ⊔︀ B

Proof

Step Hyp Ref Expression
1 elex C B C V
2 1oex 1 𝑜 V
3 2 snid 1 𝑜 1 𝑜
4 opelxpi 1 𝑜 1 𝑜 C B 1 𝑜 C 1 𝑜 × B
5 3 4 mpan C B 1 𝑜 C 1 𝑜 × B
6 opeq2 x = C 1 𝑜 x = 1 𝑜 C
7 df-inr inr = x V 1 𝑜 x
8 6 7 fvmptg C V 1 𝑜 C 1 𝑜 × B inr C = 1 𝑜 C
9 1 5 8 syl2anc C B inr C = 1 𝑜 C
10 elun2 1 𝑜 C 1 𝑜 × B 1 𝑜 C × A 1 𝑜 × B
11 5 10 syl C B 1 𝑜 C × A 1 𝑜 × B
12 df-dju A ⊔︀ B = × A 1 𝑜 × B
13 11 12 eleqtrrdi C B 1 𝑜 C A ⊔︀ B
14 9 13 eqeltrd C B inr C A ⊔︀ B