Metamath Proof Explorer


Theorem djurf1o

Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)

Ref Expression
Assertion djurf1o inr : V 1-1 onto 1 𝑜 × V

Proof

Step Hyp Ref Expression
1 df-inr inr = x V 1 𝑜 x
2 1onn 1 𝑜 ω
3 snidg 1 𝑜 ω 1 𝑜 1 𝑜
4 2 3 ax-mp 1 𝑜 1 𝑜
5 opelxpi 1 𝑜 1 𝑜 x V 1 𝑜 x 1 𝑜 × V
6 4 5 mpan x V 1 𝑜 x 1 𝑜 × V
7 6 adantl x V 1 𝑜 x 1 𝑜 × V
8 fvexd y 1 𝑜 × V 2 nd y V
9 1st2nd2 y 1 𝑜 × V y = 1 st y 2 nd y
10 xp1st y 1 𝑜 × V 1 st y 1 𝑜
11 elsni 1 st y 1 𝑜 1 st y = 1 𝑜
12 10 11 syl y 1 𝑜 × V 1 st y = 1 𝑜
13 12 opeq1d y 1 𝑜 × V 1 st y 2 nd y = 1 𝑜 2 nd y
14 9 13 eqtrd y 1 𝑜 × V y = 1 𝑜 2 nd y
15 14 eqeq2d y 1 𝑜 × V 1 𝑜 x = y 1 𝑜 x = 1 𝑜 2 nd y
16 eqcom 1 𝑜 x = y y = 1 𝑜 x
17 eqid 1 𝑜 = 1 𝑜
18 1oex 1 𝑜 V
19 vex x V
20 18 19 opth 1 𝑜 x = 1 𝑜 2 nd y 1 𝑜 = 1 𝑜 x = 2 nd y
21 17 20 mpbiran 1 𝑜 x = 1 𝑜 2 nd y x = 2 nd y
22 15 16 21 3bitr3g y 1 𝑜 × V y = 1 𝑜 x x = 2 nd y
23 22 bicomd y 1 𝑜 × V x = 2 nd y y = 1 𝑜 x
24 23 ad2antll x V y 1 𝑜 × V x = 2 nd y y = 1 𝑜 x
25 1 7 8 24 f1o2d inr : V 1-1 onto 1 𝑜 × V
26 25 mptru inr : V 1-1 onto 1 𝑜 × V