Metamath Proof Explorer


Theorem djussxp2

Description: Stronger version of djussxp . (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Assertion djussxp2 kAk×BA×kAB

Proof

Step Hyp Ref Expression
1 nfcv _kA
2 nfiu1 _kkAB
3 1 2 nfxp _kA×kAB
4 3 iunssf kAk×BA×kABkAk×BA×kAB
5 snssi kAkA
6 ssiun2 kABkAB
7 xpss12 kABkABk×BA×kAB
8 5 6 7 syl2anc kAk×BA×kAB
9 4 8 mprgbir kAk×BA×kAB