Metamath Proof Explorer


Theorem djuun

Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022)

Ref Expression
Assertion djuun inl A inr B = A ⊔︀ B

Proof

Step Hyp Ref Expression
1 elun x inl A inr B x inl A x inr B
2 djulf1o inl : V 1-1 onto × V
3 f1ofn inl : V 1-1 onto × V inl Fn V
4 2 3 ax-mp inl Fn V
5 ssv A V
6 fvelimab inl Fn V A V x inl A u A inl u = x
7 4 5 6 mp2an x inl A u A inl u = x
8 7 biimpi x inl A u A inl u = x
9 simprr x inl A u A inl u = x inl u = x
10 vex u V
11 opex u V
12 opeq2 z = u z = u
13 df-inl inl = z V z
14 12 13 fvmptg u V u V inl u = u
15 10 11 14 mp2an inl u = u
16 0ex V
17 16 snid
18 opelxpi u A u × A
19 17 18 mpan u A u × A
20 19 ad2antrl x inl A u A inl u = x u × A
21 15 20 eqeltrid x inl A u A inl u = x inl u × A
22 9 21 eqeltrrd x inl A u A inl u = x x × A
23 8 22 rexlimddv x inl A x × A
24 elun1 x × A x × A 1 𝑜 × B
25 23 24 syl x inl A x × A 1 𝑜 × B
26 df-dju A ⊔︀ B = × A 1 𝑜 × B
27 25 26 eleqtrrdi x inl A x A ⊔︀ B
28 djurf1o inr : V 1-1 onto 1 𝑜 × V
29 f1ofn inr : V 1-1 onto 1 𝑜 × V inr Fn V
30 28 29 ax-mp inr Fn V
31 ssv B V
32 fvelimab inr Fn V B V x inr B u B inr u = x
33 30 31 32 mp2an x inr B u B inr u = x
34 33 biimpi x inr B u B inr u = x
35 simprr x inr B u B inr u = x inr u = x
36 opex 1 𝑜 u V
37 opeq2 z = u 1 𝑜 z = 1 𝑜 u
38 df-inr inr = z V 1 𝑜 z
39 37 38 fvmptg u V 1 𝑜 u V inr u = 1 𝑜 u
40 10 36 39 mp2an inr u = 1 𝑜 u
41 1oex 1 𝑜 V
42 41 snid 1 𝑜 1 𝑜
43 opelxpi 1 𝑜 1 𝑜 u B 1 𝑜 u 1 𝑜 × B
44 42 43 mpan u B 1 𝑜 u 1 𝑜 × B
45 44 ad2antrl x inr B u B inr u = x 1 𝑜 u 1 𝑜 × B
46 40 45 eqeltrid x inr B u B inr u = x inr u 1 𝑜 × B
47 35 46 eqeltrrd x inr B u B inr u = x x 1 𝑜 × B
48 34 47 rexlimddv x inr B x 1 𝑜 × B
49 elun2 x 1 𝑜 × B x × A 1 𝑜 × B
50 48 49 syl x inr B x × A 1 𝑜 × B
51 50 26 eleqtrrdi x inr B x A ⊔︀ B
52 27 51 jaoi x inl A x inr B x A ⊔︀ B
53 1 52 sylbi x inl A inr B x A ⊔︀ B
54 53 ssriv inl A inr B A ⊔︀ B
55 djur x A ⊔︀ B y A x = inl y y B x = inr y
56 vex y V
57 f1odm inl : V 1-1 onto × V dom inl = V
58 2 57 ax-mp dom inl = V
59 56 58 eleqtrri y dom inl
60 simpl y A x = inl y y A
61 13 funmpt2 Fun inl
62 funfvima Fun inl y dom inl y A inl y inl A
63 61 62 mpan y dom inl y A inl y inl A
64 59 60 63 mpsyl y A x = inl y inl y inl A
65 eleq1 x = inl y x inl A inl y inl A
66 65 adantl y A x = inl y x inl A inl y inl A
67 64 66 mpbird y A x = inl y x inl A
68 67 rexlimiva y A x = inl y x inl A
69 f1odm inr : V 1-1 onto 1 𝑜 × V dom inr = V
70 28 69 ax-mp dom inr = V
71 56 70 eleqtrri y dom inr
72 simpl y B x = inr y y B
73 f1ofun inr : V 1-1 onto 1 𝑜 × V Fun inr
74 28 73 ax-mp Fun inr
75 funfvima Fun inr y dom inr y B inr y inr B
76 74 75 mpan y dom inr y B inr y inr B
77 71 72 76 mpsyl y B x = inr y inr y inr B
78 eleq1 x = inr y x inr B inr y inr B
79 78 adantl y B x = inr y x inr B inr y inr B
80 77 79 mpbird y B x = inr y x inr B
81 80 rexlimiva y B x = inr y x inr B
82 68 81 orim12i y A x = inl y y B x = inr y x inl A x inr B
83 55 82 syl x A ⊔︀ B x inl A x inr B
84 83 1 sylibr x A ⊔︀ B x inl A inr B
85 84 ssriv A ⊔︀ B inl A inr B
86 54 85 eqssi inl A inr B = A ⊔︀ B