Metamath Proof Explorer


Theorem djuxpdom

Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion djuxpdom 1 𝑜 A 1 𝑜 B A ⊔︀ B A × B

Proof

Step Hyp Ref Expression
1 df-dju A ⊔︀ B = × A 1 𝑜 × B
2 0ex V
3 relsdom Rel
4 3 brrelex2i 1 𝑜 A A V
5 xpsnen2g V A V × A A
6 2 4 5 sylancr 1 𝑜 A × A A
7 sdomen2 × A A 1 𝑜 × A 1 𝑜 A
8 6 7 syl 1 𝑜 A 1 𝑜 × A 1 𝑜 A
9 8 ibir 1 𝑜 A 1 𝑜 × A
10 1on 1 𝑜 On
11 3 brrelex2i 1 𝑜 B B V
12 xpsnen2g 1 𝑜 On B V 1 𝑜 × B B
13 10 11 12 sylancr 1 𝑜 B 1 𝑜 × B B
14 sdomen2 1 𝑜 × B B 1 𝑜 1 𝑜 × B 1 𝑜 B
15 13 14 syl 1 𝑜 B 1 𝑜 1 𝑜 × B 1 𝑜 B
16 15 ibir 1 𝑜 B 1 𝑜 1 𝑜 × B
17 unxpdom 1 𝑜 × A 1 𝑜 1 𝑜 × B × A 1 𝑜 × B × A × 1 𝑜 × B
18 9 16 17 syl2an 1 𝑜 A 1 𝑜 B × A 1 𝑜 × B × A × 1 𝑜 × B
19 1 18 eqbrtrid 1 𝑜 A 1 𝑜 B A ⊔︀ B × A × 1 𝑜 × B
20 xpen × A A 1 𝑜 × B B × A × 1 𝑜 × B A × B
21 6 13 20 syl2an 1 𝑜 A 1 𝑜 B × A × 1 𝑜 × B A × B
22 domentr A ⊔︀ B × A × 1 𝑜 × B × A × 1 𝑜 × B A × B A ⊔︀ B A × B
23 19 21 22 syl2anc 1 𝑜 A 1 𝑜 B A ⊔︀ B A × B