Metamath Proof Explorer


Theorem dlatjmdi

Description: In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses dlatjmdi.b B = Base K
dlatjmdi.j ˙ = join K
dlatjmdi.m ˙ = meet K
Assertion dlatjmdi K DLat X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z

Proof

Step Hyp Ref Expression
1 dlatjmdi.b B = Base K
2 dlatjmdi.j ˙ = join K
3 dlatjmdi.m ˙ = meet K
4 eqid ODual K = ODual K
5 4 odudlatb K DLat K DLat ODual K DLat
6 5 ibi K DLat ODual K DLat
7 4 1 odubas B = Base ODual K
8 4 3 odujoin ˙ = join ODual K
9 4 2 odumeet ˙ = meet ODual K
10 7 8 9 dlatmjdi ODual K DLat X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z
11 6 10 sylan K DLat X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z