Metamath Proof Explorer


Theorem dlatl

Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion dlatl K DLat K Lat

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid join K = join K
3 eqid meet K = meet K
4 1 2 3 isdlat K DLat K Lat x Base K y Base K z Base K x meet K y join K z = x meet K y join K x meet K z
5 4 simplbi K DLat K Lat