Metamath Proof Explorer


Theorem dlwwlknondlwlknonen

Description: The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses dlwwlknondlwlknonbij.v V = Vtx G
dlwwlknondlwlknonbij.w W = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
dlwwlknondlwlknonbij.d D = w X ClWWalksNOn G N | w N 2 = X
Assertion dlwwlknondlwlknonen G USHGraph X V N 2 W D

Proof

Step Hyp Ref Expression
1 dlwwlknondlwlknonbij.v V = Vtx G
2 dlwwlknondlwlknonbij.w W = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
3 dlwwlknondlwlknonbij.d D = w X ClWWalksNOn G N | w N 2 = X
4 fvex ClWalks G V
5 2 4 rabex2 W V
6 ovex X ClWWalksNOn G N V
7 3 6 rabex2 D V
8 eqid c W 2 nd c prefix 1 st c = c W 2 nd c prefix 1 st c
9 1 2 3 8 dlwwlknondlwlknonf1o G USHGraph X V N 2 c W 2 nd c prefix 1 st c : W 1-1 onto D
10 f1oen2g W V D V c W 2 nd c prefix 1 st c : W 1-1 onto D W D
11 5 7 9 10 mp3an12i G USHGraph X V N 2 W D