Metamath Proof Explorer


Theorem dlwwlknondlwlknonf1o

Description: F is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses dlwwlknondlwlknonbij.v V = Vtx G
dlwwlknondlwlknonbij.w W = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
dlwwlknondlwlknonbij.d D = w X ClWWalksNOn G N | w N 2 = X
dlwwlknondlwlknonf1o.f F = c W 2 nd c prefix 1 st c
Assertion dlwwlknondlwlknonf1o G USHGraph X V N 2 F : W 1-1 onto D

Proof

Step Hyp Ref Expression
1 dlwwlknondlwlknonbij.v V = Vtx G
2 dlwwlknondlwlknonbij.w W = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
3 dlwwlknondlwlknonbij.d D = w X ClWWalksNOn G N | w N 2 = X
4 dlwwlknondlwlknonf1o.f F = c W 2 nd c prefix 1 st c
5 df-3an 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
6 5 rabbii w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
7 2 6 eqtri W = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
8 eqid w ClWalks G | 1 st w = N 2 nd w 0 = X = w ClWalks G | 1 st w = N 2 nd w 0 = X
9 eqid c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c = c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c
10 eluz2nn N 2 N
11 1 8 9 clwwlknonclwlknonf1o G USHGraph X V N c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c : w ClWalks G | 1 st w = N 2 nd w 0 = X 1-1 onto X ClWWalksNOn G N
12 10 11 syl3an3 G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c : w ClWalks G | 1 st w = N 2 nd w 0 = X 1-1 onto X ClWWalksNOn G N
13 fveq1 y = 2 nd c prefix 1 st c y N 2 = 2 nd c prefix 1 st c N 2
14 13 3ad2ant3 G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X y = 2 nd c prefix 1 st c y N 2 = 2 nd c prefix 1 st c N 2
15 2fveq3 w = c 1 st w = 1 st c
16 15 eqeq1d w = c 1 st w = N 1 st c = N
17 fveq2 w = c 2 nd w = 2 nd c
18 17 fveq1d w = c 2 nd w 0 = 2 nd c 0
19 18 eqeq1d w = c 2 nd w 0 = X 2 nd c 0 = X
20 16 19 anbi12d w = c 1 st w = N 2 nd w 0 = X 1 st c = N 2 nd c 0 = X
21 20 elrab c w ClWalks G | 1 st w = N 2 nd w 0 = X c ClWalks G 1 st c = N 2 nd c 0 = X
22 simplrl c ClWalks G 1 st c = N 2 nd c 0 = X G USHGraph X V N 2 1 st c = N
23 simpll c ClWalks G 1 st c = N 2 nd c 0 = X G USHGraph X V N 2 c ClWalks G
24 simpr3 c ClWalks G 1 st c = N 2 nd c 0 = X G USHGraph X V N 2 N 2
25 22 23 24 3jca c ClWalks G 1 st c = N 2 nd c 0 = X G USHGraph X V N 2 1 st c = N c ClWalks G N 2
26 25 ex c ClWalks G 1 st c = N 2 nd c 0 = X G USHGraph X V N 2 1 st c = N c ClWalks G N 2
27 21 26 sylbi c w ClWalks G | 1 st w = N 2 nd w 0 = X G USHGraph X V N 2 1 st c = N c ClWalks G N 2
28 27 impcom G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X 1 st c = N c ClWalks G N 2
29 dlwwlknondlwlknonf1olem1 1 st c = N c ClWalks G N 2 2 nd c prefix 1 st c N 2 = 2 nd c N 2
30 28 29 syl G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c N 2 = 2 nd c N 2
31 30 3adant3 G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X y = 2 nd c prefix 1 st c 2 nd c prefix 1 st c N 2 = 2 nd c N 2
32 14 31 eqtrd G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X y = 2 nd c prefix 1 st c y N 2 = 2 nd c N 2
33 32 eqeq1d G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X y = 2 nd c prefix 1 st c y N 2 = X 2 nd c N 2 = X
34 nfv w 2 nd c N 2 = X
35 17 fveq1d w = c 2 nd w N 2 = 2 nd c N 2
36 35 eqeq1d w = c 2 nd w N 2 = X 2 nd c N 2 = X
37 34 36 sbiev c w 2 nd w N 2 = X 2 nd c N 2 = X
38 33 37 bitr4di G USHGraph X V N 2 c w ClWalks G | 1 st w = N 2 nd w 0 = X y = 2 nd c prefix 1 st c y N 2 = X c w 2 nd w N 2 = X
39 7 8 4 9 12 38 f1ossf1o G USHGraph X V N 2 F : W 1-1 onto y X ClWWalksNOn G N | y N 2 = X
40 fveq1 w = y w N 2 = y N 2
41 40 eqeq1d w = y w N 2 = X y N 2 = X
42 41 cbvrabv w X ClWWalksNOn G N | w N 2 = X = y X ClWWalksNOn G N | y N 2 = X
43 3 42 eqtri D = y X ClWWalksNOn G N | y N 2 = X
44 f1oeq3 D = y X ClWWalksNOn G N | y N 2 = X F : W 1-1 onto D F : W 1-1 onto y X ClWWalksNOn G N | y N 2 = X
45 43 44 ax-mp F : W 1-1 onto D F : W 1-1 onto y X ClWWalksNOn G N | y N 2 = X
46 39 45 sylibr G USHGraph X V N 2 F : W 1-1 onto D