Metamath Proof Explorer


Theorem dmaddsr

Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion dmaddsr dom + 𝑹 = 𝑹 × 𝑹

Proof

Step Hyp Ref Expression
1 df-plr + 𝑹 = x y z | x 𝑹 y 𝑹 w v u f x = w v ~ 𝑹 y = u f ~ 𝑹 z = w + 𝑷 u v + 𝑷 f ~ 𝑹
2 1 dmeqi dom + 𝑹 = dom x y z | x 𝑹 y 𝑹 w v u f x = w v ~ 𝑹 y = u f ~ 𝑹 z = w + 𝑷 u v + 𝑷 f ~ 𝑹
3 dmoprabss dom x y z | x 𝑹 y 𝑹 w v u f x = w v ~ 𝑹 y = u f ~ 𝑹 z = w + 𝑷 u v + 𝑷 f ~ 𝑹 𝑹 × 𝑹
4 2 3 eqsstri dom + 𝑹 𝑹 × 𝑹
5 0nsr ¬ 𝑹
6 addclsr x 𝑹 y 𝑹 x + 𝑹 y 𝑹
7 5 6 oprssdm 𝑹 × 𝑹 dom + 𝑹
8 4 7 eqssi dom + 𝑹 = 𝑹 × 𝑹