Metamath Proof Explorer


Theorem dmadjrnb

Description: The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv .) (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjrnb T dom adj h adj h T dom adj h

Proof

Step Hyp Ref Expression
1 dmadjrn T dom adj h adj h T dom adj h
2 ax-hv0cl 0
3 2 n0ii ¬ =
4 eqcom = =
5 3 4 mtbir ¬ =
6 dm0 dom =
7 6 eqeq1i dom = =
8 5 7 mtbir ¬ dom =
9 fdm : dom =
10 8 9 mto ¬ :
11 dmadjop dom adj h :
12 10 11 mto ¬ dom adj h
13 ndmfv ¬ T dom adj h adj h T =
14 13 eleq1d ¬ T dom adj h adj h T dom adj h dom adj h
15 12 14 mtbiri ¬ T dom adj h ¬ adj h T dom adj h
16 15 con4i adj h T dom adj h T dom adj h
17 1 16 impbii T dom adj h adj h T dom adj h