Metamath Proof Explorer


Theorem dmadjss

Description: The domain of the adjoint function is a subset of the maps from ~H to ~H . (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjss dom adj h

Proof

Step Hyp Ref Expression
1 dfadj2 adj h = t u | t : u : x y x ih t y = u x ih y
2 3anass t : u : x y x ih t y = u x ih y t : u : x y x ih t y = u x ih y
3 ax-hilex V
4 3 3 elmap t t :
5 4 anbi1i t u : x y x ih t y = u x ih y t : u : x y x ih t y = u x ih y
6 2 5 bitr4i t : u : x y x ih t y = u x ih y t u : x y x ih t y = u x ih y
7 6 opabbii t u | t : u : x y x ih t y = u x ih y = t u | t u : x y x ih t y = u x ih y
8 1 7 eqtri adj h = t u | t u : x y x ih t y = u x ih y
9 8 dmeqi dom adj h = dom t u | t u : x y x ih t y = u x ih y
10 dmopabss dom t u | t u : x y x ih t y = u x ih y
11 9 10 eqsstri dom adj h