Step |
Hyp |
Ref |
Expression |
1 |
|
dmatid.a |
|
2 |
|
dmatid.b |
|
3 |
|
dmatid.0 |
|
4 |
|
dmatid.d |
|
5 |
|
dmatcrng.c |
|
6 |
|
crngring |
|
7 |
1 2 3 4
|
dmatsrng |
|
8 |
6 7
|
sylan |
|
9 |
5
|
subrgring |
|
10 |
8 9
|
syl |
|
11 |
|
simp1lr |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
simp2 |
|
15 |
|
simp3 |
|
16 |
1 13 3 4
|
dmatmat |
|
17 |
16
|
imp |
|
18 |
17
|
adantrr |
|
19 |
18
|
3ad2ant1 |
|
20 |
1 12 13 14 15 19
|
matecld |
|
21 |
1 13 3 4
|
dmatmat |
|
22 |
21
|
imp |
|
23 |
22
|
adantrl |
|
24 |
23
|
3ad2ant1 |
|
25 |
1 12 13 14 15 24
|
matecld |
|
26 |
|
eqid |
|
27 |
12 26
|
crngcom |
|
28 |
11 20 25 27
|
syl3anc |
|
29 |
28
|
ifeq1d |
|
30 |
29
|
mpoeq3dva |
|
31 |
6
|
anim2i |
|
32 |
1 2 3 4
|
dmatmul |
|
33 |
31 32
|
sylan |
|
34 |
|
pm3.22 |
|
35 |
1 2 3 4
|
dmatmul |
|
36 |
31 34 35
|
syl2an |
|
37 |
30 33 36
|
3eqtr4d |
|
38 |
37
|
ralrimivva |
|
39 |
38
|
ancoms |
|
40 |
5
|
subrgbas |
|
41 |
40
|
eqcomd |
|
42 |
|
eqid |
|
43 |
5 42
|
ressmulr |
|
44 |
43
|
eqcomd |
|
45 |
44
|
oveqd |
|
46 |
44
|
oveqd |
|
47 |
45 46
|
eqeq12d |
|
48 |
41 47
|
raleqbidv |
|
49 |
41 48
|
raleqbidv |
|
50 |
8 49
|
syl |
|
51 |
39 50
|
mpbird |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
52 53
|
iscrng2 |
|
55 |
10 51 54
|
sylanbrc |
|