Metamath Proof Explorer


Theorem dmatel

Description: A N x N diagonal matrix over (a ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatval.a A=NMatR
dmatval.b B=BaseA
dmatval.0 0˙=0R
dmatval.d D=NDMatR
Assertion dmatel NFinRVMDMBiNjNijiMj=0˙

Proof

Step Hyp Ref Expression
1 dmatval.a A=NMatR
2 dmatval.b B=BaseA
3 dmatval.0 0˙=0R
4 dmatval.d D=NDMatR
5 1 2 3 4 dmatval NFinRVD=mB|iNjNijimj=0˙
6 5 eleq2d NFinRVMDMmB|iNjNijimj=0˙
7 oveq m=Mimj=iMj
8 7 eqeq1d m=Mimj=0˙iMj=0˙
9 8 imbi2d m=Mijimj=0˙ijiMj=0˙
10 9 2ralbidv m=MiNjNijimj=0˙iNjNijiMj=0˙
11 10 elrab MmB|iNjNijimj=0˙MBiNjNijiMj=0˙
12 6 11 bitrdi NFinRVMDMBiNjNijiMj=0˙