Database
BASIC LINEAR ALGEBRA
Matrices
The subalgebras of diagonal and scalar matrices
dmatel
Next ⟩
dmatmat
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmatel
Description:
A
N
x
N
diagonal matrix over (a ring)
R
.
(Contributed by
AV
, 18-Dec-2019)
Ref
Expression
Hypotheses
dmatval.a
⊢
A
=
N
Mat
R
dmatval.b
⊢
B
=
Base
A
dmatval.0
⊢
0
˙
=
0
R
dmatval.d
⊢
D
=
N
DMat
R
Assertion
dmatel
⊢
N
∈
Fin
∧
R
∈
V
→
M
∈
D
↔
M
∈
B
∧
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
M
j
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
dmatval.a
⊢
A
=
N
Mat
R
2
dmatval.b
⊢
B
=
Base
A
3
dmatval.0
⊢
0
˙
=
0
R
4
dmatval.d
⊢
D
=
N
DMat
R
5
1
2
3
4
dmatval
⊢
N
∈
Fin
∧
R
∈
V
→
D
=
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
m
j
=
0
˙
6
5
eleq2d
⊢
N
∈
Fin
∧
R
∈
V
→
M
∈
D
↔
M
∈
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
m
j
=
0
˙
7
oveq
⊢
m
=
M
→
i
m
j
=
i
M
j
8
7
eqeq1d
⊢
m
=
M
→
i
m
j
=
0
˙
↔
i
M
j
=
0
˙
9
8
imbi2d
⊢
m
=
M
→
i
≠
j
→
i
m
j
=
0
˙
↔
i
≠
j
→
i
M
j
=
0
˙
10
9
2ralbidv
⊢
m
=
M
→
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
m
j
=
0
˙
↔
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
M
j
=
0
˙
11
10
elrab
⊢
M
∈
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
m
j
=
0
˙
↔
M
∈
B
∧
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
M
j
=
0
˙
12
6
11
bitrdi
⊢
N
∈
Fin
∧
R
∈
V
→
M
∈
D
↔
M
∈
B
∧
∀
i
∈
N
∀
j
∈
N
i
≠
j
→
i
M
j
=
0
˙