Metamath Proof Explorer


Theorem dmatel

Description: A N x N diagonal matrix over (a ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatval.a A = N Mat R
dmatval.b B = Base A
dmatval.0 0 ˙ = 0 R
dmatval.d D = N DMat R
Assertion dmatel N Fin R V M D M B i N j N i j i M j = 0 ˙

Proof

Step Hyp Ref Expression
1 dmatval.a A = N Mat R
2 dmatval.b B = Base A
3 dmatval.0 0 ˙ = 0 R
4 dmatval.d D = N DMat R
5 1 2 3 4 dmatval N Fin R V D = m B | i N j N i j i m j = 0 ˙
6 5 eleq2d N Fin R V M D M m B | i N j N i j i m j = 0 ˙
7 oveq m = M i m j = i M j
8 7 eqeq1d m = M i m j = 0 ˙ i M j = 0 ˙
9 8 imbi2d m = M i j i m j = 0 ˙ i j i M j = 0 ˙
10 9 2ralbidv m = M i N j N i j i m j = 0 ˙ i N j N i j i M j = 0 ˙
11 10 elrab M m B | i N j N i j i m j = 0 ˙ M B i N j N i j i M j = 0 ˙
12 6 11 bitrdi N Fin R V M D M B i N j N i j i M j = 0 ˙