Metamath Proof Explorer


Theorem dmatelnd

Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A = N Mat R
dmatid.b B = Base A
dmatid.0 0 ˙ = 0 R
dmatid.d D = N DMat R
Assertion dmatelnd N Fin R Ring X D I N J N I J I X J = 0 ˙

Proof

Step Hyp Ref Expression
1 dmatid.a A = N Mat R
2 dmatid.b B = Base A
3 dmatid.0 0 ˙ = 0 R
4 dmatid.d D = N DMat R
5 1 2 3 4 dmatel N Fin R Ring X D X B i N j N i j i X j = 0 ˙
6 neeq1 i = I i j I j
7 oveq1 i = I i X j = I X j
8 7 eqeq1d i = I i X j = 0 ˙ I X j = 0 ˙
9 6 8 imbi12d i = I i j i X j = 0 ˙ I j I X j = 0 ˙
10 neeq2 j = J I j I J
11 oveq2 j = J I X j = I X J
12 11 eqeq1d j = J I X j = 0 ˙ I X J = 0 ˙
13 10 12 imbi12d j = J I j I X j = 0 ˙ I J I X J = 0 ˙
14 9 13 rspc2v I N J N i N j N i j i X j = 0 ˙ I J I X J = 0 ˙
15 14 com23 I N J N I J i N j N i j i X j = 0 ˙ I X J = 0 ˙
16 15 3impia I N J N I J i N j N i j i X j = 0 ˙ I X J = 0 ˙
17 16 com12 i N j N i j i X j = 0 ˙ I N J N I J I X J = 0 ˙
18 17 2a1i N Fin R Ring X B i N j N i j i X j = 0 ˙ I N J N I J I X J = 0 ˙
19 18 impd N Fin R Ring X B i N j N i j i X j = 0 ˙ I N J N I J I X J = 0 ˙
20 5 19 sylbid N Fin R Ring X D I N J N I J I X J = 0 ˙
21 20 3impia N Fin R Ring X D I N J N I J I X J = 0 ˙
22 21 imp N Fin R Ring X D I N J N I J I X J = 0 ˙