Metamath Proof Explorer


Theorem dmatmat

Description: An N x N diagonal matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatval.a A = N Mat R
dmatval.b B = Base A
dmatval.0 0 ˙ = 0 R
dmatval.d D = N DMat R
Assertion dmatmat N Fin R V M D M B

Proof

Step Hyp Ref Expression
1 dmatval.a A = N Mat R
2 dmatval.b B = Base A
3 dmatval.0 0 ˙ = 0 R
4 dmatval.d D = N DMat R
5 1 2 3 4 dmatel N Fin R V M D M B i N j N i j i M j = 0 ˙
6 simpl M B i N j N i j i M j = 0 ˙ M B
7 5 6 syl6bi N Fin R V M D M B