Step |
Hyp |
Ref |
Expression |
1 |
|
dmatid.a |
|
2 |
|
dmatid.b |
|
3 |
|
dmatid.0 |
|
4 |
|
dmatid.d |
|
5 |
|
eqid |
|
6 |
1 5
|
matmulr |
|
7 |
6
|
adantr |
|
8 |
7
|
eqcomd |
|
9 |
8
|
oveqd |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
simplr |
|
13 |
|
simpll |
|
14 |
1 2 3 4
|
dmatmat |
|
15 |
14
|
imp |
|
16 |
1 10 2
|
matbas2i |
|
17 |
15 16
|
syl |
|
18 |
17
|
adantrr |
|
19 |
1 2 3 4
|
dmatmat |
|
20 |
19
|
imp |
|
21 |
1 10 2
|
matbas2i |
|
22 |
20 21
|
syl |
|
23 |
22
|
adantrl |
|
24 |
5 10 11 12 13 13 13 18 23
|
mamuval |
|
25 |
|
eqid |
|
26 |
|
ringcmn |
|
27 |
26
|
ad2antlr |
|
28 |
27
|
3ad2ant1 |
|
29 |
28
|
adantl |
|
30 |
13
|
3ad2ant1 |
|
31 |
30
|
adantl |
|
32 |
|
eqid |
|
33 |
|
ovexd |
|
34 |
|
fvexd |
|
35 |
32 31 33 34
|
fsuppmptdm |
|
36 |
12
|
3ad2ant1 |
|
37 |
36
|
ad2antlr |
|
38 |
|
simp2 |
|
39 |
38
|
ad2antlr |
|
40 |
|
simpr |
|
41 |
|
eqid |
|
42 |
1 41 3 4
|
dmatmat |
|
43 |
42
|
imp |
|
44 |
43
|
adantrr |
|
45 |
44
|
3ad2ant1 |
|
46 |
45
|
ad2antlr |
|
47 |
1 10
|
matecl |
|
48 |
39 40 46 47
|
syl3anc |
|
49 |
|
simplr3 |
|
50 |
1 41 3 4
|
dmatmat |
|
51 |
50
|
imp |
|
52 |
51
|
adantrl |
|
53 |
52
|
3ad2ant1 |
|
54 |
53
|
ad2antlr |
|
55 |
1 10
|
matecl |
|
56 |
40 49 54 55
|
syl3anc |
|
57 |
10 11
|
ringcl |
|
58 |
37 48 56 57
|
syl3anc |
|
59 |
38
|
adantl |
|
60 |
|
simp3 |
|
61 |
15
|
adantrr |
|
62 |
61 2
|
eleqtrdi |
|
63 |
62
|
3ad2ant1 |
|
64 |
1 10
|
matecl |
|
65 |
38 60 63 64
|
syl3anc |
|
66 |
50
|
a1d |
|
67 |
66
|
imp32 |
|
68 |
67
|
3ad2ant1 |
|
69 |
1 10
|
matecl |
|
70 |
38 60 68 69
|
syl3anc |
|
71 |
10 11
|
ringcl |
|
72 |
36 65 70 71
|
syl3anc |
|
73 |
72
|
adantl |
|
74 |
|
eqtr |
|
75 |
74
|
ancoms |
|
76 |
75
|
oveq2d |
|
77 |
76
|
adantlr |
|
78 |
|
oveq1 |
|
79 |
78
|
adantl |
|
80 |
77 79
|
oveq12d |
|
81 |
10 25 29 31 35 58 59 73 80
|
gsumdifsnd |
|
82 |
|
simprl |
|
83 |
13 12 82
|
3jca |
|
84 |
83
|
3ad2ant1 |
|
85 |
84
|
ad2antlr |
|
86 |
38
|
ad2antlr |
|
87 |
|
eldifi |
|
88 |
87
|
adantl |
|
89 |
|
eldifsni |
|
90 |
89
|
necomd |
|
91 |
90
|
adantl |
|
92 |
1 2 3 4
|
dmatelnd |
|
93 |
85 86 88 91 92
|
syl13anc |
|
94 |
93
|
oveq1d |
|
95 |
36
|
ad2antlr |
|
96 |
|
simplr3 |
|
97 |
53
|
ad2antlr |
|
98 |
88 96 97 55
|
syl3anc |
|
99 |
10 11 3
|
ringlz |
|
100 |
95 98 99
|
syl2anc |
|
101 |
94 100
|
eqtrd |
|
102 |
101
|
mpteq2dva |
|
103 |
102
|
oveq2d |
|
104 |
|
diffi |
|
105 |
|
ringmnd |
|
106 |
104 105
|
anim12ci |
|
107 |
106
|
adantr |
|
108 |
107
|
3ad2ant1 |
|
109 |
108
|
adantl |
|
110 |
3
|
gsumz |
|
111 |
109 110
|
syl |
|
112 |
103 111
|
eqtrd |
|
113 |
112
|
oveq1d |
|
114 |
105
|
ad2antlr |
|
115 |
114
|
3ad2ant1 |
|
116 |
38 60 53 69
|
syl3anc |
|
117 |
36 65 116 71
|
syl3anc |
|
118 |
115 117
|
jca |
|
119 |
118
|
adantl |
|
120 |
10 25 3
|
mndlid |
|
121 |
119 120
|
syl |
|
122 |
81 113 121
|
3eqtrd |
|
123 |
|
iftrue |
|
124 |
123
|
adantr |
|
125 |
122 124
|
eqtr4d |
|
126 |
|
simprr |
|
127 |
13 12 126
|
3jca |
|
128 |
127
|
3ad2ant1 |
|
129 |
128
|
ad2antlr |
|
130 |
129
|
adantl |
|
131 |
|
simprr |
|
132 |
|
simplr3 |
|
133 |
132
|
adantl |
|
134 |
|
df-ne |
|
135 |
|
neeq1 |
|
136 |
135
|
biimpcd |
|
137 |
134 136
|
sylbir |
|
138 |
137
|
adantr |
|
139 |
138
|
adantr |
|
140 |
139
|
impcom |
|
141 |
1 2 3 4
|
dmatelnd |
|
142 |
130 131 133 140 141
|
syl13anc |
|
143 |
142
|
oveq2d |
|
144 |
36
|
ad2antlr |
|
145 |
38
|
ad2antlr |
|
146 |
|
simpr |
|
147 |
63
|
ad2antlr |
|
148 |
145 146 147 47
|
syl3anc |
|
149 |
10 11 3
|
ringrz |
|
150 |
144 148 149
|
syl2anc |
|
151 |
150
|
adantl |
|
152 |
143 151
|
eqtrd |
|
153 |
84
|
ad2antlr |
|
154 |
153
|
adantl |
|
155 |
145
|
adantl |
|
156 |
|
simprr |
|
157 |
|
neqne |
|
158 |
157
|
adantr |
|
159 |
154 155 156 158 92
|
syl13anc |
|
160 |
159
|
oveq1d |
|
161 |
68
|
ad2antlr |
|
162 |
146 132 161 55
|
syl3anc |
|
163 |
144 162 99
|
syl2anc |
|
164 |
163
|
adantl |
|
165 |
160 164
|
eqtrd |
|
166 |
152 165
|
pm2.61ian |
|
167 |
166
|
mpteq2dva |
|
168 |
167
|
oveq2d |
|
169 |
105
|
anim2i |
|
170 |
169
|
ancomd |
|
171 |
3
|
gsumz |
|
172 |
170 171
|
syl |
|
173 |
172
|
adantr |
|
174 |
173
|
3ad2ant1 |
|
175 |
174
|
adantl |
|
176 |
|
iffalse |
|
177 |
176
|
eqcomd |
|
178 |
177
|
adantr |
|
179 |
168 175 178
|
3eqtrd |
|
180 |
125 179
|
pm2.61ian |
|
181 |
180
|
mpoeq3dva |
|
182 |
9 24 181
|
3eqtrd |
|