| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatid.a |
|
| 2 |
|
dmatid.b |
|
| 3 |
|
dmatid.0 |
|
| 4 |
|
dmatid.d |
|
| 5 |
|
oveq |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
6
|
imbi2d |
|
| 8 |
7
|
2ralbidv |
|
| 9 |
|
eqid |
|
| 10 |
|
simpll |
|
| 11 |
|
simplr |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
|
eqid |
|
| 14 |
|
simp2 |
|
| 15 |
|
simp3 |
|
| 16 |
1 13 3 4
|
dmatmat |
|
| 17 |
16
|
imp |
|
| 18 |
17
|
adantrr |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
1 9 13 14 15 19
|
matecld |
|
| 21 |
1 13 3 4
|
dmatmat |
|
| 22 |
21
|
imp |
|
| 23 |
22
|
adantrl |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
1 9 13 14 15 24
|
matecld |
|
| 26 |
|
eqid |
|
| 27 |
9 26
|
ringcl |
|
| 28 |
12 20 25 27
|
syl3anc |
|
| 29 |
9 3
|
ring0cl |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
28 32
|
ifcld |
|
| 34 |
1 9 2 10 11 33
|
matbas2d |
|
| 35 |
|
eqidd |
|
| 36 |
|
eqeq12 |
|
| 37 |
|
oveq12 |
|
| 38 |
|
oveq12 |
|
| 39 |
37 38
|
oveq12d |
|
| 40 |
36 39
|
ifbieq1d |
|
| 41 |
40
|
adantl |
|
| 42 |
|
simplrl |
|
| 43 |
|
simplrr |
|
| 44 |
|
ovex |
|
| 45 |
3
|
fvexi |
|
| 46 |
44 45
|
ifex |
|
| 47 |
46
|
a1i |
|
| 48 |
35 41 42 43 47
|
ovmpod |
|
| 49 |
|
ifnefalse |
|
| 50 |
49
|
adantl |
|
| 51 |
48 50
|
eqtrd |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
ralrimivva |
|
| 54 |
8 34 53
|
elrabd |
|
| 55 |
1 2 3 4
|
dmatmul |
|
| 56 |
1 2 3 4
|
dmatval |
|
| 57 |
56
|
adantr |
|
| 58 |
54 55 57
|
3eltr4d |
|