Metamath Proof Explorer


Theorem dmatscmcl

Description: The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019)

Ref Expression
Hypotheses dmatscmcl.k K = Base R
dmatscmcl.a A = N Mat R
dmatscmcl.b B = Base A
dmatscmcl.s ˙ = A
dmatscmcl.d D = N DMat R
Assertion dmatscmcl N Fin R Ring C K M D C ˙ M D

Proof

Step Hyp Ref Expression
1 dmatscmcl.k K = Base R
2 dmatscmcl.a A = N Mat R
3 dmatscmcl.b B = Base A
4 dmatscmcl.s ˙ = A
5 dmatscmcl.d D = N DMat R
6 simprl N Fin R Ring C K M D C K
7 eqid 0 R = 0 R
8 2 3 7 5 dmatmat N Fin R Ring M D M B
9 8 com12 M D N Fin R Ring M B
10 9 adantl C K M D N Fin R Ring M B
11 10 impcom N Fin R Ring C K M D M B
12 6 11 jca N Fin R Ring C K M D C K M B
13 1 2 3 4 matvscl N Fin R Ring C K M B C ˙ M B
14 12 13 syldan N Fin R Ring C K M D C ˙ M B
15 2 3 7 5 dmatel N Fin R Ring M D M B i N j N i j i M j = 0 R
16 15 adantr N Fin R Ring C K M D M B i N j N i j i M j = 0 R
17 simp-4r N Fin R Ring C K M B i N j N R Ring
18 simpr N Fin R Ring C K C K
19 18 anim1i N Fin R Ring C K M B C K M B
20 19 adantr N Fin R Ring C K M B i N j N C K M B
21 simpr N Fin R Ring C K M B i N j N i N j N
22 17 20 21 3jca N Fin R Ring C K M B i N j N R Ring C K M B i N j N
23 22 adantr N Fin R Ring C K M B i N j N i M j = 0 R R Ring C K M B i N j N
24 eqid R = R
25 2 3 1 4 24 matvscacell R Ring C K M B i N j N i C ˙ M j = C R i M j
26 23 25 syl N Fin R Ring C K M B i N j N i M j = 0 R i C ˙ M j = C R i M j
27 oveq2 i M j = 0 R C R i M j = C R 0 R
28 27 adantl N Fin R Ring C K M B i N j N i M j = 0 R C R i M j = C R 0 R
29 1 24 7 ringrz R Ring C K C R 0 R = 0 R
30 29 ad5ant23 N Fin R Ring C K M B i N j N C R 0 R = 0 R
31 30 adantr N Fin R Ring C K M B i N j N i M j = 0 R C R 0 R = 0 R
32 26 28 31 3eqtrd N Fin R Ring C K M B i N j N i M j = 0 R i C ˙ M j = 0 R
33 32 ex N Fin R Ring C K M B i N j N i M j = 0 R i C ˙ M j = 0 R
34 33 imim2d N Fin R Ring C K M B i N j N i j i M j = 0 R i j i C ˙ M j = 0 R
35 34 ralimdvva N Fin R Ring C K M B i N j N i j i M j = 0 R i N j N i j i C ˙ M j = 0 R
36 35 expimpd N Fin R Ring C K M B i N j N i j i M j = 0 R i N j N i j i C ˙ M j = 0 R
37 16 36 sylbid N Fin R Ring C K M D i N j N i j i C ˙ M j = 0 R
38 37 impr N Fin R Ring C K M D i N j N i j i C ˙ M j = 0 R
39 2 3 7 5 dmatel N Fin R Ring C ˙ M D C ˙ M B i N j N i j i C ˙ M j = 0 R
40 39 adantr N Fin R Ring C K M D C ˙ M D C ˙ M B i N j N i j i C ˙ M j = 0 R
41 14 38 40 mpbir2and N Fin R Ring C K M D C ˙ M D