Step |
Hyp |
Ref |
Expression |
1 |
|
dmatscmcl.k |
|
2 |
|
dmatscmcl.a |
|
3 |
|
dmatscmcl.b |
|
4 |
|
dmatscmcl.s |
|
5 |
|
dmatscmcl.d |
|
6 |
|
simprl |
|
7 |
|
eqid |
|
8 |
2 3 7 5
|
dmatmat |
|
9 |
8
|
com12 |
|
10 |
9
|
adantl |
|
11 |
10
|
impcom |
|
12 |
6 11
|
jca |
|
13 |
1 2 3 4
|
matvscl |
|
14 |
12 13
|
syldan |
|
15 |
2 3 7 5
|
dmatel |
|
16 |
15
|
adantr |
|
17 |
|
simp-4r |
|
18 |
|
simpr |
|
19 |
18
|
anim1i |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
17 20 21
|
3jca |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
2 3 1 4 24
|
matvscacell |
|
26 |
23 25
|
syl |
|
27 |
|
oveq2 |
|
28 |
27
|
adantl |
|
29 |
1 24 7
|
ringrz |
|
30 |
29
|
ad5ant23 |
|
31 |
30
|
adantr |
|
32 |
26 28 31
|
3eqtrd |
|
33 |
32
|
ex |
|
34 |
33
|
imim2d |
|
35 |
34
|
ralimdvva |
|
36 |
35
|
expimpd |
|
37 |
16 36
|
sylbid |
|
38 |
37
|
impr |
|
39 |
2 3 7 5
|
dmatel |
|
40 |
39
|
adantr |
|
41 |
14 38 40
|
mpbir2and |
|