| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatscmcl.k |  | 
						
							| 2 |  | dmatscmcl.a |  | 
						
							| 3 |  | dmatscmcl.b |  | 
						
							| 4 |  | dmatscmcl.s |  | 
						
							| 5 |  | dmatscmcl.d |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 2 3 7 5 | dmatmat |  | 
						
							| 9 | 8 | com12 |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 10 | impcom |  | 
						
							| 12 | 6 11 | jca |  | 
						
							| 13 | 1 2 3 4 | matvscl |  | 
						
							| 14 | 12 13 | syldan |  | 
						
							| 15 | 2 3 7 5 | dmatel |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | simp-4r |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 18 | anim1i |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 17 20 21 | 3jca |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 2 3 1 4 24 | matvscacell |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 1 24 7 | ringrz |  | 
						
							| 30 | 29 | ad5ant23 |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 26 28 31 | 3eqtrd |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 33 | imim2d |  | 
						
							| 35 | 34 | ralimdvva |  | 
						
							| 36 | 35 | expimpd |  | 
						
							| 37 | 16 36 | sylbid |  | 
						
							| 38 | 37 | impr |  | 
						
							| 39 | 2 3 7 5 | dmatel |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 14 38 40 | mpbir2and |  |