Metamath Proof Explorer


Theorem dmatsgrp

Description: The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A = N Mat R
dmatid.b B = Base A
dmatid.0 0 ˙ = 0 R
dmatid.d D = N DMat R
Assertion dmatsgrp R Ring N Fin D SubGrp A

Proof

Step Hyp Ref Expression
1 dmatid.a A = N Mat R
2 dmatid.b B = Base A
3 dmatid.0 0 ˙ = 0 R
4 dmatid.d D = N DMat R
5 1 2 3 4 dmatmat N Fin R Ring z D z B
6 5 ancoms R Ring N Fin z D z B
7 6 ssrdv R Ring N Fin D B
8 1 2 3 4 dmatid N Fin R Ring 1 A D
9 8 ancoms R Ring N Fin 1 A D
10 9 ne0d R Ring N Fin D
11 1 2 3 4 dmatsubcl N Fin R Ring x D y D x - A y D
12 11 ancom1s R Ring N Fin x D y D x - A y D
13 12 ralrimivva R Ring N Fin x D y D x - A y D
14 1 matring N Fin R Ring A Ring
15 14 ancoms R Ring N Fin A Ring
16 ringgrp A Ring A Grp
17 eqid - A = - A
18 2 17 issubg4 A Grp D SubGrp A D B D x D y D x - A y D
19 15 16 18 3syl R Ring N Fin D SubGrp A D B D x D y D x - A y D
20 7 10 13 19 mpbir3and R Ring N Fin D SubGrp A