Metamath Proof Explorer


Theorem dmatsrng

Description: The set of diagonal matrices is a subring of the matrix ring/algebra. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A = N Mat R
dmatid.b B = Base A
dmatid.0 0 ˙ = 0 R
dmatid.d D = N DMat R
Assertion dmatsrng R Ring N Fin D SubRing A

Proof

Step Hyp Ref Expression
1 dmatid.a A = N Mat R
2 dmatid.b B = Base A
3 dmatid.0 0 ˙ = 0 R
4 dmatid.d D = N DMat R
5 1 2 3 4 dmatsgrp R Ring N Fin D SubGrp A
6 1 2 3 4 dmatid N Fin R Ring 1 A D
7 6 ancoms R Ring N Fin 1 A D
8 1 2 3 4 dmatmulcl N Fin R Ring x D y D x A y D
9 8 ralrimivva N Fin R Ring x D y D x A y D
10 9 ancoms R Ring N Fin x D y D x A y D
11 1 matring N Fin R Ring A Ring
12 11 ancoms R Ring N Fin A Ring
13 eqid 1 A = 1 A
14 eqid A = A
15 2 13 14 issubrg2 A Ring D SubRing A D SubGrp A 1 A D x D y D x A y D
16 12 15 syl R Ring N Fin D SubRing A D SubGrp A 1 A D x D y D x A y D
17 5 7 10 16 mpbir3and R Ring N Fin D SubRing A