Step |
Hyp |
Ref |
Expression |
1 |
|
dmatid.a |
|
2 |
|
dmatid.b |
|
3 |
|
dmatid.0 |
|
4 |
|
dmatid.d |
|
5 |
1
|
matgrp |
|
6 |
5
|
adantr |
|
7 |
1 2 3 4
|
dmatmat |
|
8 |
7
|
imp |
|
9 |
8
|
adantrr |
|
10 |
1 2 3 4
|
dmatmat |
|
11 |
10
|
imp |
|
12 |
11
|
adantrl |
|
13 |
|
eqid |
|
14 |
2 13
|
grpsubcl |
|
15 |
6 9 12 14
|
syl3anc |
|
16 |
|
simpr |
|
17 |
16
|
adantr |
|
18 |
17
|
adantr |
|
19 |
7 10
|
anim12d |
|
20 |
19
|
imp |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
|
eqid |
|
24 |
1 2 13 23
|
matsubgcell |
|
25 |
18 21 22 24
|
syl3anc |
|
26 |
25
|
adantr |
|
27 |
|
simpll |
|
28 |
|
simprl |
|
29 |
27 17 28
|
3jca |
|
30 |
29
|
adantr |
|
31 |
30
|
adantr |
|
32 |
|
simplrl |
|
33 |
|
simplrr |
|
34 |
|
simpr |
|
35 |
1 2 3 4
|
dmatelnd |
|
36 |
31 32 33 34 35
|
syl13anc |
|
37 |
|
simprr |
|
38 |
27 17 37
|
3jca |
|
39 |
38
|
adantr |
|
40 |
39
|
adantr |
|
41 |
1 2 3 4
|
dmatelnd |
|
42 |
40 32 33 34 41
|
syl13anc |
|
43 |
36 42
|
oveq12d |
|
44 |
|
ringgrp |
|
45 |
|
eqid |
|
46 |
45 3
|
ring0cl |
|
47 |
44 46
|
jca |
|
48 |
47
|
adantl |
|
49 |
45 3 23
|
grpsubid |
|
50 |
48 49
|
syl |
|
51 |
50
|
ad3antrrr |
|
52 |
26 43 51
|
3eqtrd |
|
53 |
52
|
ex |
|
54 |
53
|
ralrimivva |
|
55 |
1 2 3 4
|
dmatel |
|
56 |
55
|
adantr |
|
57 |
15 54 56
|
mpbir2and |
|