| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatid.a |
|
| 2 |
|
dmatid.b |
|
| 3 |
|
dmatid.0 |
|
| 4 |
|
dmatid.d |
|
| 5 |
1
|
matgrp |
|
| 6 |
5
|
adantr |
|
| 7 |
1 2 3 4
|
dmatmat |
|
| 8 |
7
|
imp |
|
| 9 |
8
|
adantrr |
|
| 10 |
1 2 3 4
|
dmatmat |
|
| 11 |
10
|
imp |
|
| 12 |
11
|
adantrl |
|
| 13 |
|
eqid |
|
| 14 |
2 13
|
grpsubcl |
|
| 15 |
6 9 12 14
|
syl3anc |
|
| 16 |
|
simpr |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
adantr |
|
| 19 |
7 10
|
anim12d |
|
| 20 |
19
|
imp |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
|
eqid |
|
| 24 |
1 2 13 23
|
matsubgcell |
|
| 25 |
18 21 22 24
|
syl3anc |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpll |
|
| 28 |
|
simprl |
|
| 29 |
27 17 28
|
3jca |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simplrl |
|
| 33 |
|
simplrr |
|
| 34 |
|
simpr |
|
| 35 |
1 2 3 4
|
dmatelnd |
|
| 36 |
31 32 33 34 35
|
syl13anc |
|
| 37 |
|
simprr |
|
| 38 |
27 17 37
|
3jca |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
adantr |
|
| 41 |
1 2 3 4
|
dmatelnd |
|
| 42 |
40 32 33 34 41
|
syl13anc |
|
| 43 |
36 42
|
oveq12d |
|
| 44 |
|
ringgrp |
|
| 45 |
|
eqid |
|
| 46 |
45 3
|
ring0cl |
|
| 47 |
44 46
|
jca |
|
| 48 |
47
|
adantl |
|
| 49 |
45 3 23
|
grpsubid |
|
| 50 |
48 49
|
syl |
|
| 51 |
50
|
ad3antrrr |
|
| 52 |
26 43 51
|
3eqtrd |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
ralrimivva |
|
| 55 |
1 2 3 4
|
dmatel |
|
| 56 |
55
|
adantr |
|
| 57 |
15 54 56
|
mpbir2and |
|