Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmcoeq
Next ⟩
rncoeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmcoeq
Description:
Domain of a composition.
(Contributed by
NM
, 19-Mar-1998)
Ref
Expression
Assertion
dmcoeq
⊢
dom
⁡
A
=
ran
⁡
B
→
dom
⁡
A
∘
B
=
dom
⁡
B
Proof
Step
Hyp
Ref
Expression
1
eqimss2
⊢
dom
⁡
A
=
ran
⁡
B
→
ran
⁡
B
⊆
dom
⁡
A
2
dmcosseq
⊢
ran
⁡
B
⊆
dom
⁡
A
→
dom
⁡
A
∘
B
=
dom
⁡
B
3
1
2
syl
⊢
dom
⁡
A
=
ran
⁡
B
→
dom
⁡
A
∘
B
=
dom
⁡
B