Metamath Proof Explorer


Theorem dmcosseq

Description: Domain of a composition. (Contributed by NM, 28-May-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmcosseq ranBdomAdomAB=domB

Proof

Step Hyp Ref Expression
1 dmcoss domABdomB
2 1 a1i ranBdomAdomABdomB
3 ssel ranBdomAyranBydomA
4 vex yV
5 4 elrn yranBxxBy
6 4 eldm ydomAzyAz
7 5 6 imbi12i yranBydomAxxByzyAz
8 19.8a xByxxBy
9 8 imim1i xxByzyAzxByzyAz
10 pm3.2 xByyAzxByyAz
11 10 eximdv xByzyAzzxByyAz
12 9 11 sylcom xxByzyAzxByzxByyAz
13 7 12 sylbi yranBydomAxByzxByyAz
14 3 13 syl ranBdomAxByzxByyAz
15 14 eximdv ranBdomAyxByyzxByyAz
16 excom zyxByyAzyzxByyAz
17 15 16 imbitrrdi ranBdomAyxByzyxByyAz
18 vex xV
19 vex zV
20 18 19 opelco xzAByxByyAz
21 20 exbii zxzABzyxByyAz
22 17 21 imbitrrdi ranBdomAyxByzxzAB
23 18 eldm xdomByxBy
24 18 eldm2 xdomABzxzAB
25 22 23 24 3imtr4g ranBdomAxdomBxdomAB
26 25 ssrdv ranBdomAdomBdomAB
27 2 26 eqssd ranBdomAdomAB=domB