Metamath Proof Explorer


Theorem dmdbr

Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdbr A C B C A 𝑀 * B x C B x x A B = x A B

Proof

Step Hyp Ref Expression
1 eleq1 y = A y C A C
2 1 anbi1d y = A y C z C A C z C
3 ineq2 y = A x y = x A
4 3 oveq1d y = A x y z = x A z
5 oveq1 y = A y z = A z
6 5 ineq2d y = A x y z = x A z
7 4 6 eqeq12d y = A x y z = x y z x A z = x A z
8 7 imbi2d y = A z x x y z = x y z z x x A z = x A z
9 8 ralbidv y = A x C z x x y z = x y z x C z x x A z = x A z
10 2 9 anbi12d y = A y C z C x C z x x y z = x y z A C z C x C z x x A z = x A z
11 eleq1 z = B z C B C
12 11 anbi2d z = B A C z C A C B C
13 sseq1 z = B z x B x
14 oveq2 z = B x A z = x A B
15 oveq2 z = B A z = A B
16 15 ineq2d z = B x A z = x A B
17 14 16 eqeq12d z = B x A z = x A z x A B = x A B
18 13 17 imbi12d z = B z x x A z = x A z B x x A B = x A B
19 18 ralbidv z = B x C z x x A z = x A z x C B x x A B = x A B
20 12 19 anbi12d z = B A C z C x C z x x A z = x A z A C B C x C B x x A B = x A B
21 df-dmd 𝑀 * = y z | y C z C x C z x x y z = x y z
22 10 20 21 brabg A C B C A 𝑀 * B A C B C x C B x x A B = x A B
23 22 bianabs A C B C A 𝑀 * B x C B x x A B = x A B