Metamath Proof Explorer


Theorem dmdcan

Description: Cancellation law for division and multiplication. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by Fan Zheng, 3-Jul-2016)

Ref Expression
Assertion dmdcan A A 0 B B 0 C A B C A = C B

Proof

Step Hyp Ref Expression
1 simp1l A A 0 B B 0 C A
2 simp3 A A 0 B B 0 C C
3 simp1r A A 0 B B 0 C A 0
4 divcl C A A 0 C A
5 2 1 3 4 syl3anc A A 0 B B 0 C C A
6 simp2l A A 0 B B 0 C B
7 simp2r A A 0 B B 0 C B 0
8 div23 A C A B B 0 A C A B = A B C A
9 1 5 6 7 8 syl112anc A A 0 B B 0 C A C A B = A B C A
10 divcan2 C A A 0 A C A = C
11 2 1 3 10 syl3anc A A 0 B B 0 C A C A = C
12 11 oveq1d A A 0 B B 0 C A C A B = C B
13 9 12 eqtr3d A A 0 B B 0 C A B C A = C B