Metamath Proof Explorer


Theorem dmdcan2d

Description: Cancellation law for division and multiplication. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divmuld.4 φ B 0
divdiv23d.5 φ C 0
Assertion dmdcan2d φ A B B C = A C

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divmuld.4 φ B 0
5 divdiv23d.5 φ C 0
6 1 2 4 divcld φ A B
7 2 3 5 divcld φ B C
8 6 7 mulcomd φ A B B C = B C A B
9 1 2 3 4 5 dmdcand φ B C A B = A C
10 8 9 eqtrd φ A B B C = A C