Metamath Proof Explorer


Theorem dmdi

Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdi A C B C C C A 𝑀 * B B C C A B = C A B

Proof

Step Hyp Ref Expression
1 dmdbr A C B C A 𝑀 * B x C B x x A B = x A B
2 1 biimpd A C B C A 𝑀 * B x C B x x A B = x A B
3 sseq2 x = C B x B C
4 ineq1 x = C x A = C A
5 4 oveq1d x = C x A B = C A B
6 ineq1 x = C x A B = C A B
7 5 6 eqeq12d x = C x A B = x A B C A B = C A B
8 3 7 imbi12d x = C B x x A B = x A B B C C A B = C A B
9 8 rspcv C C x C B x x A B = x A B B C C A B = C A B
10 2 9 sylan9 A C B C C C A 𝑀 * B B C C A B = C A B
11 10 3impa A C B C C C A 𝑀 * B B C C A B = C A B
12 11 imp32 A C B C C C A 𝑀 * B B C C A B = C A B