Metamath Proof Explorer


Theorem dmdi2

Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdi2 A C B C C C A 𝑀 * B B C C A B C A B

Proof

Step Hyp Ref Expression
1 dmdi A C B C C C A 𝑀 * B B C C A B = C A B
2 eqimss2 C A B = C A B C A B C A B
3 1 2 syl A C B C C C A 𝑀 * B B C C A B C A B