Metamath Proof Explorer


Theorem dmdi4

Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdi4 A C B C C C A 𝑀 * B C B A B C B A B

Proof

Step Hyp Ref Expression
1 dmdbr4 A C B C A 𝑀 * B x C x B A B x B A B
2 1 biimpd A C B C A 𝑀 * B x C x B A B x B A B
3 oveq1 x = C x B = C B
4 3 ineq1d x = C x B A B = C B A B
5 3 ineq1d x = C x B A = C B A
6 5 oveq1d x = C x B A B = C B A B
7 4 6 sseq12d x = C x B A B x B A B C B A B C B A B
8 7 rspcv C C x C x B A B x B A B C B A B C B A B
9 2 8 sylan9 A C B C C C A 𝑀 * B C B A B C B A B
10 9 3impa A C B C C C A 𝑀 * B C B A B C B A B