Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
|
2 |
|
oveq1 |
|
3 |
2
|
ineq1d |
|
4 |
|
oveq1 |
|
5 |
3 4
|
eqeq12d |
|
6 |
1 5
|
imbi12d |
|
7 |
6
|
rspccv |
|
8 |
|
choccl |
|
9 |
8
|
imim1i |
|
10 |
9
|
com12 |
|
11 |
10
|
adantl |
|
12 |
|
chsscon3 |
|
13 |
12
|
biimpd |
|
14 |
13
|
adantll |
|
15 |
|
fveq2 |
|
16 |
|
choccl |
|
17 |
|
chjcl |
|
18 |
8 16 17
|
syl2an |
|
19 |
|
chdmm3 |
|
20 |
18 19
|
sylan |
|
21 |
|
chdmj4 |
|
22 |
21
|
adantr |
|
23 |
22
|
oveq1d |
|
24 |
20 23
|
eqtrd |
|
25 |
24
|
anasss |
|
26 |
|
choccl |
|
27 |
|
chincl |
|
28 |
16 26 27
|
syl2an |
|
29 |
|
chdmj2 |
|
30 |
28 29
|
sylan2 |
|
31 |
|
chdmm4 |
|
32 |
31
|
adantl |
|
33 |
32
|
ineq2d |
|
34 |
30 33
|
eqtrd |
|
35 |
25 34
|
eqeq12d |
|
36 |
35
|
ancoms |
|
37 |
15 36
|
syl5ib |
|
38 |
14 37
|
imim12d |
|
39 |
11 38
|
syld |
|
40 |
39
|
ex |
|
41 |
40
|
com23 |
|
42 |
7 41
|
syl5 |
|
43 |
42
|
ralrimdv |
|
44 |
|
sseq2 |
|
45 |
|
ineq1 |
|
46 |
45
|
oveq1d |
|
47 |
|
ineq1 |
|
48 |
46 47
|
eqeq12d |
|
49 |
44 48
|
imbi12d |
|
50 |
49
|
rspccv |
|
51 |
|
choccl |
|
52 |
51
|
imim1i |
|
53 |
52
|
com12 |
|
54 |
53
|
adantl |
|
55 |
|
chsscon2 |
|
56 |
55
|
biimprd |
|
57 |
56
|
adantll |
|
58 |
|
fveq2 |
|
59 |
|
chincl |
|
60 |
51 59
|
sylan |
|
61 |
|
chdmj1 |
|
62 |
60 61
|
sylan |
|
63 |
|
chdmm2 |
|
64 |
63
|
adantr |
|
65 |
64
|
ineq1d |
|
66 |
62 65
|
eqtrd |
|
67 |
66
|
anasss |
|
68 |
|
chjcl |
|
69 |
|
chdmm2 |
|
70 |
68 69
|
sylan2 |
|
71 |
|
chdmj1 |
|
72 |
71
|
adantl |
|
73 |
72
|
oveq2d |
|
74 |
70 73
|
eqtrd |
|
75 |
67 74
|
eqeq12d |
|
76 |
75
|
ancoms |
|
77 |
58 76
|
syl5ib |
|
78 |
57 77
|
imim12d |
|
79 |
54 78
|
syld |
|
80 |
79
|
ex |
|
81 |
80
|
com23 |
|
82 |
50 81
|
syl5 |
|
83 |
82
|
ralrimdv |
|
84 |
43 83
|
impbid |
|
85 |
|
mdbr |
|
86 |
16 26 85
|
syl2an |
|
87 |
|
dmdbr |
|
88 |
84 86 87
|
3bitr4rd |
|