Metamath Proof Explorer


Theorem dmdprd

Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Proof shortened by AV, 11-Jul-2019)

Ref Expression
Hypotheses dmdprd.z Z = Cntz G
dmdprd.0 0 ˙ = 0 G
dmdprd.k K = mrCls SubGrp G
Assertion dmdprd I V dom S = I G dom DProd S G Grp S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙

Proof

Step Hyp Ref Expression
1 dmdprd.z Z = Cntz G
2 dmdprd.0 0 ˙ = 0 G
3 dmdprd.k K = mrCls SubGrp G
4 elex S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S V
5 4 a1i I V dom S = I S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S V
6 fex S : I SubGrp G I V S V
7 6 expcom I V S : I SubGrp G S V
8 7 adantr I V dom S = I S : I SubGrp G S V
9 8 adantrd I V dom S = I S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙ S V
10 df-sbc [˙S / h]˙ h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙
11 simpr I V dom S = I S V S V
12 simpr I V dom S = I h = S h = S
13 12 dmeqd I V dom S = I h = S dom h = dom S
14 simplr I V dom S = I h = S dom S = I
15 13 14 eqtrd I V dom S = I h = S dom h = I
16 12 15 feq12d I V dom S = I h = S h : dom h SubGrp G S : I SubGrp G
17 15 difeq1d I V dom S = I h = S dom h x = I x
18 12 fveq1d I V dom S = I h = S h x = S x
19 12 fveq1d I V dom S = I h = S h y = S y
20 19 fveq2d I V dom S = I h = S Z h y = Z S y
21 18 20 sseq12d I V dom S = I h = S h x Z h y S x Z S y
22 17 21 raleqbidv I V dom S = I h = S y dom h x h x Z h y y I x S x Z S y
23 12 17 imaeq12d I V dom S = I h = S h dom h x = S I x
24 23 unieqd I V dom S = I h = S h dom h x = S I x
25 24 fveq2d I V dom S = I h = S K h dom h x = K S I x
26 18 25 ineq12d I V dom S = I h = S h x K h dom h x = S x K S I x
27 26 eqeq1d I V dom S = I h = S h x K h dom h x = 0 ˙ S x K S I x = 0 ˙
28 22 27 anbi12d I V dom S = I h = S y dom h x h x Z h y h x K h dom h x = 0 ˙ y I x S x Z S y S x K S I x = 0 ˙
29 15 28 raleqbidv I V dom S = I h = S x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ x I y I x S x Z S y S x K S I x = 0 ˙
30 16 29 anbi12d I V dom S = I h = S h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
31 30 adantlr I V dom S = I S V h = S h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
32 11 31 sbcied I V dom S = I S V [˙S / h]˙ h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
33 10 32 bitr3id I V dom S = I S V S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
34 33 ex I V dom S = I S V S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
35 5 9 34 pm5.21ndd I V dom S = I S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
36 35 anbi2d I V dom S = I G Grp S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙ G Grp S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
37 df-br G dom DProd S G S dom DProd
38 fvex s x V
39 38 rgenw x dom s s x V
40 ixpexg x dom s s x V x dom s s x V
41 39 40 ax-mp x dom s s x V
42 41 mptrabex f h x dom s s x | finSupp 0 g h g f V
43 42 rnex ran f h x dom s s x | finSupp 0 g h g f V
44 43 rgen2w g Grp s h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g ran f h x dom s s x | finSupp 0 g h g f V
45 df-dprd DProd = g Grp , s h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g ran f h x dom s s x | finSupp 0 g h g f
46 45 fmpox g Grp s h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g ran f h x dom s s x | finSupp 0 g h g f V DProd : g Grp g × h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g V
47 44 46 mpbi DProd : g Grp g × h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g V
48 47 fdmi dom DProd = g Grp g × h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g
49 48 eleq2i G S dom DProd G S g Grp g × h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g
50 fveq2 g = G SubGrp g = SubGrp G
51 50 feq3d g = G h : dom h SubGrp g h : dom h SubGrp G
52 fveq2 g = G Cntz g = Cntz G
53 52 1 eqtr4di g = G Cntz g = Z
54 53 fveq1d g = G Cntz g h y = Z h y
55 54 sseq2d g = G h x Cntz g h y h x Z h y
56 55 ralbidv g = G y dom h x h x Cntz g h y y dom h x h x Z h y
57 50 fveq2d g = G mrCls SubGrp g = mrCls SubGrp G
58 57 3 eqtr4di g = G mrCls SubGrp g = K
59 58 fveq1d g = G mrCls SubGrp g h dom h x = K h dom h x
60 59 ineq2d g = G h x mrCls SubGrp g h dom h x = h x K h dom h x
61 fveq2 g = G 0 g = 0 G
62 61 2 eqtr4di g = G 0 g = 0 ˙
63 62 sneqd g = G 0 g = 0 ˙
64 60 63 eqeq12d g = G h x mrCls SubGrp g h dom h x = 0 g h x K h dom h x = 0 ˙
65 56 64 anbi12d g = G y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g y dom h x h x Z h y h x K h dom h x = 0 ˙
66 65 ralbidv g = G x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙
67 51 66 anbi12d g = G h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙
68 67 abbidv g = G h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g = h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙
69 68 opeliunxp2 G S g Grp g × h | h : dom h SubGrp g x dom h y dom h x h x Cntz g h y h x mrCls SubGrp g h dom h x = 0 g G Grp S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙
70 37 49 69 3bitri G dom DProd S G Grp S h | h : dom h SubGrp G x dom h y dom h x h x Z h y h x K h dom h x = 0 ˙
71 3anass G Grp S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙ G Grp S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙
72 36 70 71 3bitr4g I V dom S = I G dom DProd S G Grp S : I SubGrp G x I y I x S x Z S y S x K S I x = 0 ˙