Step |
Hyp |
Ref |
Expression |
1 |
|
dmdprd.z |
|
2 |
|
dmdprd.0 |
|
3 |
|
dmdprd.k |
|
4 |
|
dmdprdd.1 |
|
5 |
|
dmdprdd.2 |
|
6 |
|
dmdprdd.3 |
|
7 |
|
dmdprdd.4 |
|
8 |
|
dmdprdd.5 |
|
9 |
|
eldifsn |
|
10 |
|
necom |
|
11 |
10
|
anbi2i |
|
12 |
9 11
|
bitri |
|
13 |
7
|
3exp2 |
|
14 |
13
|
imp4b |
|
15 |
12 14
|
syl5bi |
|
16 |
15
|
ralrimiv |
|
17 |
6
|
ffvelrnda |
|
18 |
2
|
subg0cl |
|
19 |
17 18
|
syl |
|
20 |
4
|
adantr |
|
21 |
|
eqid |
|
22 |
21
|
subgacs |
|
23 |
|
acsmre |
|
24 |
20 22 23
|
3syl |
|
25 |
|
imassrn |
|
26 |
6
|
frnd |
|
27 |
26
|
adantr |
|
28 |
25 27
|
sstrid |
|
29 |
|
mresspw |
|
30 |
24 29
|
syl |
|
31 |
28 30
|
sstrd |
|
32 |
|
sspwuni |
|
33 |
31 32
|
sylib |
|
34 |
3
|
mrccl |
|
35 |
24 33 34
|
syl2anc |
|
36 |
2
|
subg0cl |
|
37 |
35 36
|
syl |
|
38 |
19 37
|
elind |
|
39 |
38
|
snssd |
|
40 |
8 39
|
eqssd |
|
41 |
16 40
|
jca |
|
42 |
41
|
ralrimiva |
|
43 |
6
|
fdmd |
|
44 |
1 2 3
|
dmdprd |
|
45 |
5 43 44
|
syl2anc |
|
46 |
4 6 42 45
|
mpbir3and |
|