Step |
Hyp |
Ref |
Expression |
1 |
|
dmdprdpr.z |
|
2 |
|
dmdprdpr.0 |
|
3 |
|
dmdprdpr.s |
|
4 |
|
dmdprdpr.t |
|
5 |
|
0ex |
|
6 |
|
dprdsn |
|
7 |
5 3 6
|
sylancr |
|
8 |
7
|
simpld |
|
9 |
|
xpscf |
|
10 |
3 4 9
|
sylanbrc |
|
11 |
10
|
ffnd |
|
12 |
5
|
prid1 |
|
13 |
|
df2o3 |
|
14 |
12 13
|
eleqtrri |
|
15 |
|
fnressn |
|
16 |
11 14 15
|
sylancl |
|
17 |
|
fvpr0o |
|
18 |
3 17
|
syl |
|
19 |
18
|
opeq2d |
|
20 |
19
|
sneqd |
|
21 |
16 20
|
eqtrd |
|
22 |
8 21
|
breqtrrd |
|
23 |
|
1on |
|
24 |
|
dprdsn |
|
25 |
23 4 24
|
sylancr |
|
26 |
25
|
simpld |
|
27 |
|
1oex |
|
28 |
27
|
prid2 |
|
29 |
28 13
|
eleqtrri |
|
30 |
|
fnressn |
|
31 |
11 29 30
|
sylancl |
|
32 |
|
fvpr1o |
|
33 |
4 32
|
syl |
|
34 |
33
|
opeq2d |
|
35 |
34
|
sneqd |
|
36 |
31 35
|
eqtrd |
|
37 |
26 36
|
breqtrrd |
|
38 |
|
1n0 |
|
39 |
38
|
necomi |
|
40 |
|
disjsn2 |
|
41 |
39 40
|
mp1i |
|
42 |
|
df-pr |
|
43 |
13 42
|
eqtri |
|
44 |
43
|
a1i |
|
45 |
10 41 44 1 2
|
dmdprdsplit |
|
46 |
|
3anass |
|
47 |
45 46
|
bitrdi |
|
48 |
47
|
baibd |
|
49 |
48
|
ex |
|
50 |
22 37 49
|
mp2and |
|
51 |
21
|
oveq2d |
|
52 |
7
|
simprd |
|
53 |
51 52
|
eqtrd |
|
54 |
36
|
oveq2d |
|
55 |
25
|
simprd |
|
56 |
54 55
|
eqtrd |
|
57 |
56
|
fveq2d |
|
58 |
53 57
|
sseq12d |
|
59 |
53 56
|
ineq12d |
|
60 |
59
|
eqeq1d |
|
61 |
58 60
|
anbi12d |
|
62 |
50 61
|
bitrd |
|