Metamath Proof Explorer


Theorem dmdsl3

Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of MaedaMaeda p. 2. (Contributed by NM, 26-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdsl3 A C B C C C B 𝑀 * A A C C A B C B A = C

Proof

Step Hyp Ref Expression
1 dmdi B C A C C C B 𝑀 * A A C C B A = C B A
2 1 exp32 B C A C C C B 𝑀 * A A C C B A = C B A
3 2 3com12 A C B C C C B 𝑀 * A A C C B A = C B A
4 3 imp32 A C B C C C B 𝑀 * A A C C B A = C B A
5 4 3adantr3 A C B C C C B 𝑀 * A A C C A B C B A = C B A
6 chjcom A C B C A B = B A
7 6 ineq2d A C B C C A B = C B A
8 7 3adant3 A C B C C C C A B = C B A
9 df-ss C A B C A B = C
10 9 biimpi C A B C A B = C
11 8 10 sylan9req A C B C C C C A B C B A = C
12 11 3ad2antr3 A C B C C C B 𝑀 * A A C C A B C B A = C
13 5 12 eqtrd A C B C C C B 𝑀 * A A C C A B C B A = C