Metamath Proof Explorer


Theorem dmep

Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)

Ref Expression
Assertion dmep dom E = V

Proof

Step Hyp Ref Expression
1 eqv dom E = V x x dom E
2 el y x y
3 epel x E y x y
4 3 exbii y x E y y x y
5 2 4 mpbir y x E y
6 vex x V
7 6 eldm x dom E y x E y
8 5 7 mpbir x dom E
9 1 8 mpgbir dom E = V