Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmeq
Next ⟩
dmeqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmeq
Description:
Equality theorem for domain.
(Contributed by
NM
, 11-Aug-1994)
Ref
Expression
Assertion
dmeq
⊢
A
=
B
→
dom
⁡
A
=
dom
⁡
B
Proof
Step
Hyp
Ref
Expression
1
dmss
⊢
A
⊆
B
→
dom
⁡
A
⊆
dom
⁡
B
2
dmss
⊢
B
⊆
A
→
dom
⁡
B
⊆
dom
⁡
A
3
1
2
anim12i
⊢
A
⊆
B
∧
B
⊆
A
→
dom
⁡
A
⊆
dom
⁡
B
∧
dom
⁡
B
⊆
dom
⁡
A
4
eqss
⊢
A
=
B
↔
A
⊆
B
∧
B
⊆
A
5
eqss
⊢
dom
⁡
A
=
dom
⁡
B
↔
dom
⁡
A
⊆
dom
⁡
B
∧
dom
⁡
B
⊆
dom
⁡
A
6
3
4
5
3imtr4i
⊢
A
=
B
→
dom
⁡
A
=
dom
⁡
B