Metamath Proof Explorer


Theorem dmeq

Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion dmeq A = B dom A = dom B

Proof

Step Hyp Ref Expression
1 dmss A B dom A dom B
2 dmss B A dom B dom A
3 1 2 anim12i A B B A dom A dom B dom B dom A
4 eqss A = B A B B A
5 eqss dom A = dom B dom A dom B dom B dom A
6 3 4 5 3imtr4i A = B dom A = dom B