Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Relations and functions (cont.)
dmexd
Next ⟩
fndmexd
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmexd
Description:
The domain of a set is a set.
(Contributed by
Glauco Siliprandi
, 26-Jun-2021)
Ref
Expression
Hypothesis
dmexd.1
⊢
φ
→
A
∈
V
Assertion
dmexd
⊢
φ
→
dom
⁡
A
∈
V
Proof
Step
Hyp
Ref
Expression
1
dmexd.1
⊢
φ
→
A
∈
V
2
dmexg
⊢
A
∈
V
→
dom
⁡
A
∈
V
3
1
2
syl
⊢
φ
→
dom
⁡
A
∈
V