Metamath Proof Explorer


Theorem dmfex

Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion dmfex F C F : A B A V

Proof

Step Hyp Ref Expression
1 fdm F : A B dom F = A
2 dmexg F C dom F V
3 eleq1 dom F = A dom F V A V
4 2 3 syl5ib dom F = A F C A V
5 1 4 syl F : A B F C A V
6 5 impcom F C F : A B A V