Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006) (Proof shortened by Andrew Salmon, 17-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dmfex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm | ||
2 | dmexg | ||
3 | eleq1 | ||
4 | 2 3 | syl5ib | |
5 | 1 4 | syl | |
6 | 5 | impcom |