Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmfex |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | ||
| 2 | dmexg | ||
| 3 | eleq1 | ||
| 4 | 2 3 | imbitrid | |
| 5 | 1 4 | syl | |
| 6 | 5 | impcom |