Metamath Proof Explorer


Theorem dminxp

Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion dminxp dom C A × B = A x A y B x C y

Proof

Step Hyp Ref Expression
1 dfdm4 dom C A × B = ran C A × B -1
2 cnvin C A × B -1 = C -1 A × B -1
3 cnvxp A × B -1 = B × A
4 3 ineq2i C -1 A × B -1 = C -1 B × A
5 2 4 eqtri C A × B -1 = C -1 B × A
6 5 rneqi ran C A × B -1 = ran C -1 B × A
7 1 6 eqtri dom C A × B = ran C -1 B × A
8 7 eqeq1i dom C A × B = A ran C -1 B × A = A
9 rninxp ran C -1 B × A = A x A y B y C -1 x
10 vex y V
11 vex x V
12 10 11 brcnv y C -1 x x C y
13 12 rexbii y B y C -1 x y B x C y
14 13 ralbii x A y B y C -1 x x A y B x C y
15 8 9 14 3bitri dom C A × B = A x A y B x C y