Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmiun
Next ⟩
dmuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmiun
Description:
The domain of an indexed union.
(Contributed by
Mario Carneiro
, 26-Apr-2016)
Ref
Expression
Assertion
dmiun
⊢
dom
⁡
⋃
x
∈
A
B
=
⋃
x
∈
A
dom
⁡
B
Proof
Step
Hyp
Ref
Expression
1
rexcom4
⊢
∃
x
∈
A
∃
z
y
z
∈
B
↔
∃
z
∃
x
∈
A
y
z
∈
B
2
vex
⊢
y
∈
V
3
2
eldm2
⊢
y
∈
dom
⁡
B
↔
∃
z
y
z
∈
B
4
3
rexbii
⊢
∃
x
∈
A
y
∈
dom
⁡
B
↔
∃
x
∈
A
∃
z
y
z
∈
B
5
eliun
⊢
y
z
∈
⋃
x
∈
A
B
↔
∃
x
∈
A
y
z
∈
B
6
5
exbii
⊢
∃
z
y
z
∈
⋃
x
∈
A
B
↔
∃
z
∃
x
∈
A
y
z
∈
B
7
1
4
6
3bitr4ri
⊢
∃
z
y
z
∈
⋃
x
∈
A
B
↔
∃
x
∈
A
y
∈
dom
⁡
B
8
2
eldm2
⊢
y
∈
dom
⁡
⋃
x
∈
A
B
↔
∃
z
y
z
∈
⋃
x
∈
A
B
9
eliun
⊢
y
∈
⋃
x
∈
A
dom
⁡
B
↔
∃
x
∈
A
y
∈
dom
⁡
B
10
7
8
9
3bitr4i
⊢
y
∈
dom
⁡
⋃
x
∈
A
B
↔
y
∈
⋃
x
∈
A
dom
⁡
B
11
10
eqriv
⊢
dom
⁡
⋃
x
∈
A
B
=
⋃
x
∈
A
dom
⁡
B