Metamath Proof Explorer


Theorem dmmcand

Description: Cancellation law for division and multiplication. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dmmcand.a φ A
dmmcand.b φ B
dmmcand.c φ C
dmmcand.bn0 φ B 0
Assertion dmmcand φ A B B C = A C

Proof

Step Hyp Ref Expression
1 dmmcand.a φ A
2 dmmcand.b φ B
3 dmmcand.c φ C
4 dmmcand.bn0 φ B 0
5 2 3 mulcld φ B C
6 1 2 5 4 div32d φ A B B C = A B C B
7 3 2 4 divcan3d φ B C B = C
8 7 oveq2d φ A B C B = A C
9 eqidd φ A C = A C
10 6 8 9 3eqtrd φ A B B C = A C